

Explained Simply

CiaranMcHale.com —

Java Reflection

Copyright License

Copyright © 2008 Ciaran McHale

Permission is hereby granted, free of charge, to any person obtaining a copy of this training course and
associated documentation files (the "Training Course"), to deal in the Training Course without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Training Course, and to permit persons to whom the Training
Course is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Training Course.

THE TRAINING COURSE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
TRAINING COURSE OR THE USE OR OTHER DEALINGS IN THE TRAINING COURSE.

About the Author

Ciaran McHale has a Ph.D. in computer science from Trinity College Dublin. He has
been working for IONA Technologies (www.iona.com) since 1995, where he is a
principal consultant. His primary talent is the ability to digest complex ideas and re-
explain them in simpler ways. He applies this talent to subjects that stir his passion,
such as multi-threading, distributed middleware, code generation, configuration-file
parsers, and writing training courses. You can find details of some of his work at his
personal web site: www.CiaranMcHale.com. You can email him at
Ciaran@CiaranMcHale.com.

Acknowledgements

Ciaran McHale’s employer, IONA Technologies (www.iona.com) generously gave
permission for this training material to be released under the stated open-source
license.

Table of Contents

1. Introduction to Java Reflection

2. Dynamic Proxies

3. Example Uses of Java Reflection

Chapter 1: Introduction to Java Reflection

1

Introduction to Java Reflection

Java Reflection
Explained Simply

CiaranMcHale.com

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 2

License
Copyright © 2008 Ciaran McHale.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
training course and associated documentation files (the “Training Course"), to deal in
the Training Course without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Training
Course, and to permit persons to whom the Training Course is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Training Course.

THE TRAINING COURSE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE TRAINING COURSE
OR THE USE OR OTHER DEALINGS IN THE TRAINING COURSE.

Chapter 1: Introduction to Java Reflection

3

1. Introduction

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 4

What is reflection?
n When you look in a mirror:

- You can see your reflection
- You can act on what you see, for example, straighten your tie

n In computer programming:
- Reflection is infrastructure enabling a program can see and manipulate

itself
- It consists of metadata plus operations to manipulate the metadata

n Meta means self-referential
- So metadata is data (information) about oneself

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 5

Widespread ignorance of Java reflection
n Typical way a developer learns Java:

- Buys a large book on Java
- Starts reading it
- Stops reading about half-way through due to project deadlines
- Starts coding (to meet deadlines) with what he has learned so far
- Never finds the time to read the rest of the book

n Result is widespread ignorance of many “advanced” Java
features:

- Many such features are not complex
- People just assume they are because they never read that part of the

manual
- Reflection is one “advanced” issue that is not complex

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 6

Is reflection difficult?
n When learning to program:

- First learn iterative programming with if-then-else, while-loop, …
- Later, learn recursive programming

n Most people find recursion difficult at first
- Because it is an unusual way of programming
- But it becomes much easier once you “get it”

n Likewise, many people find reflection difficult at first
- It is an unusual way of programming
- But it becomes much easier once you “get it”
- Reflection seems natural to people who have written compilers

(a parse tree is conceptually similar to metadata in reflection)

n A lot of reflection-based programming uses recursion

Chapter 1: Introduction to Java Reflection

7

2. Metadata

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 8

Accessing metadata
n Java stores metadata in classes

- Metadata for a class: java.lang.Class
- Metadata for a constructor: java.lang.reflect.Constructor
- Metadata for a field: java.lang.reflect.Field
- Metadata for a method: java.lang.reflect.Method

n Two ways to access a Class object for a class:

Class c1 = Class.forName(“java.util.Properties”);
Object obj = ...;
Class c2 = obj.getClass();

n Reflection classes are inter-dependent
- Examples are shown on the next slide

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 9

Examples of inter-relatedness of reflection classes
class Class {

Constructor[] getConstructors();
Field getDeclaredField(String name);
Field[] getDeclaredFields();
Method[] getDeclaredMethods();
...

}

class Field {
Class getType();
...

}

class Method {
Class[] getParameterTypes();
Class getReturnType();
...

}

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 10

Metadata for primitive types and arrays
n Java associates a Class instance with each primitive type:

Class c1 = int.class;
Class c2 = boolean.class;
Class c3 = void.class;

n Use Class.forName() to access the Class object for an array
Class c4 = byte.class; // byte
Class c5 = Class.forName(“[B”); // byte[]
Class c6 = Class.forName(“[[B”); // byte[][]
Class c7 = Class.forName(“[Ljava.util.Properties”);

n Encoding scheme used by Class.forName()
- B à byte; C à char; D à double; F à float; I à int; J à long;

Lclass-name à class-name[]; S à short; Z à boolean
- Use as many “[”s as there are dimensions in the array

Might be returned by
Method.getReturnType()

Might be returned by
Method.getReturnType()

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 11

Miscellaneous Class methods
n Here are some useful methods defined in Class

class Class {
public String getName(); // fully-qualified name
public boolean isArray();
public boolean isInterface();
public boolean isPrimitive();
public Class getComponentType(); // only for arrays
...

}

Chapter 1: Introduction to Java Reflection

12

3. Calling constructors

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 13

Invoking a default constructor
n Use Class.newInstance() to call the default constructor

Example:

abstract class Foo {
public static Foo create() throws Exception {

String className = System.getProperty(
“foo.implementation.class”,
“com.example.myproject.FooImpl”);

Class c = Class.forName(className);
return (Foo)c.newInstance();

}
abstract void op1(...);
abstract void op2(...);

}
...
Foo obj = Foo.create();
obj.op1(...);

Default
value

Default
value

Name of
property

Name of
property

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 14

Invoking a default constructor (cont’)
n This technique is used in CORBA:

- CORBA is an RPC (remote procedure call) standard
- There are many competing implementations of CORBA
- Factory operation is called ORB.init()
- A system property specifies which implementation of CORBA is used

n A CORBA application can be written in a portable way
- Specify the implementation you want to use via a system property

(pass –D<name>=<value> command-line option to the Java
interpreter)

n Same technique is used for J2EE:
- J2EE is a collection of specifications
- There are many competing implementations
- Use a system property to specify which implementation you are using

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 15

A plug-in architecture
n Use a properties file to store a mapping for

plugin name à class name
- Many tools support plugins: Ant, Maven, Eclipse, …

abstract class Plugin {
abstract void op1(...);
abstract void op1(...);

}
abstract class PluginManager {

public static Plugin load(String name)
throws Exception {

String className = props.getProperty(name);
Class c = Class.forName(className);
return (Plugin)c.newInstance();

}
}
...
Plugin obj = PluginManager.load(“...”);

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 16

Invoking a non-default constructor
n Slightly more complex than invoking the default constructor:

- Use Class.getConstructor(Class[] parameterTypes)
- Then call Constructor.newInstance(Object[] parameters)

abstract class PluginManager {
public static Plugin load(String name)

throws Exception {
String className = props.getProperty(name);
Class c = Class.forName(className);
Constructor cons = c.getConstructor(

new Class[]{String.class, String.class});
return (Plugin)cons.newInstance(

new Object[]{“x”, “y”});
}

}
...
Plugin obj = PluginManager.load(“...”);

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 17

Passing primitive types as parameters
n If you want to pass a primitive type as a parameter:

- Wrap the primitive value in an object wrapper
- Then use the object wrapper as the parameter

n Object wrappers for primitive types:
- boolean à java.lang.Boolean
- byte à java.lang.Byte
- char à java.lang.Character
- int à java.lang.Integer
- ...

Chapter 1: Introduction to Java Reflection

18

4. Methods

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 19

Invoking a method
n Broadly similar to invoking a non-default constructor:

- Use Class.getMethod(String name,
Class[]parameterTypes)

- Then call Method.invoke(Object target,
Object[] parameters)

Object obj = ...
Class c = obj.getClass();
Method m = c.getMethod(“doWork”,

new Class[]{String.class, String.class});
Object result= m.invoke(obj, new Object[]{“x”,“y”});

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 20

Looking up methods
n The API for looking up methods is fragmented:

- You can lookup a public method in a class or its ancestor classes
- Or, lookup a public or non-public method declared in the specified class

class Class {
public Method getMethod(String name,

Class[] parameterTypes);
public Method[] getMethods();
public Method getDeclaredMethod(String name,

Class[] parameterTypes);
public Method[] getDeclaredMethods();
...

}

A better name
would have been

getPublicMethod()

A better name
would have been

getPublicMethod()

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 21

Finding an inherited method
n This code searches up a class hierarchy for a method

- Works for both public and non-public methods

Method findMethod(Class cls, String methodName,
Class[] paramTypes)

{
Method method = null;
while (cls != null) {

try {
method = cls.getDeclaredMethod(methodName,

paramTypes);
break;

} catch (NoSuchMethodException ex) {
cls = cls.getSuperclass();

}
}
return method;

}

Chapter 1: Introduction to Java Reflection

22

5. Fields

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 23

Accessing a field
n There are two ways to access a field:

- By invoking get- and set-style methods (if the class defines them)
- By using the code shown below

Object obj = ...
Class c = obj.getClass();
Field f = c.getField(“firstName”);
f.set(obj, “John”);
Object value = f.get(obj);

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 24

Looking up fields
n The API for looking up fields is fragmented:

- You can lookup a public field in a class or its ancestor classes
- Or, lookup a public or non-public field declared in the specified class

class Class {
public Field getField(String name);
public Field[] getFields();
public Field getDeclaredField(String name);
public Field[] getDeclaredFields();
...

}

A better name
would have been

getPublicField()

A better name
would have been

getPublicField()

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 25

Finding an inherited field
n This code searches up a class hierarchy for a field

- Works for both public and non-public fields

Field findField(Class cls, String fieldName)
{

Field field = null;
while (cls != null) {

try {
field = cls.getDeclaredField(fieldName);
break;

} catch (NoSuchFieldException ex) {
cls = cls.getSuperclass();

}
}
return field;

}

Chapter 1: Introduction to Java Reflection

26

6. Modifiers

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 27

Java modifiers
n Java defines 11 modifiers:

- abstract, final, native, private, protected, public, static,
strictfp, synchronized, transient and volatile

n Some of the modifiers can be applied to a class, method or
field:

- Set of modifiers is represented as bit-fields in an integer
- Access set of modifiers by calling int getModifiers()

n Useful static methods on java.lang.reflect.Modifier:
static boolean isAbstract(int modifier);
static boolean isFinal(int modifier);
static boolean isNative(int modifier);
static boolean isPrivate(int modifier);
...

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 28

Accessing non-public fields and methods
n Both Field and Method define the following methods

(inherited from java.lang.reflect.AccessibleObject):

boolean isAccessible();
void setAccessible(boolean flag);
static void setAccessible(AccessibleObject[] array,

boolean flag);

n Better terminology might have been
“SuppressSecurityChecks” instead of “Accessible”

n Example of use:
if (!Modifier.isPublic(field.getModifiers()) {

field.setAccessible(true);
}
Object obj = field.get(obj); Hibernate uses this technique

so it can serialize non-public
fields of an object to a database

Hibernate uses this technique
so it can serialize non-public

fields of an object to a database

Chapter 1: Introduction to Java Reflection

29

7. Further reading and summary

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 30

Further reading
n There are very few books that discuss Java reflection

- An excellent one is Java Reflection in Action
by Ira R. Forman and Nate Forman

- It is concise and easy to understand

n Main other source of information is Javadoc documentation

Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 31

Summary
n This chapter has introduced the basics of Java reflection:

- Metadata provides information about a program
- Methods on the metadata enable a program to examine itself and take

actions

n Reflection is an unusual way to program:
- Its “meta” nature can cause confusion at first
- It is simple to use once you know how

n The next chapter looks at a reflection feature called
dynamic proxies

Chapter 2: Dynamic Proxies

1

Dynamic Proxies

Java Reflection
Explained Simply

CiaranMcHale.com

Chapter 2: Dynamic Proxies

Dynamic Proxies 2

License
Copyright © 2008 Ciaran McHale.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
training course and associated documentation files (the “Training Course"), to deal in
the Training Course without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Training
Course, and to permit persons to whom the Training Course is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Training Course.

THE TRAINING COURSE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE TRAINING COURSE
OR THE USE OR OTHER DEALINGS IN THE TRAINING COURSE.

Chapter 2: Dynamic Proxies

Dynamic Proxies 3

What is a proxy?
n Dictionary definition: “a person authorized to act for another”

- Example: if you ask a friend to vote on your behalf then you are
“voting by proxy”

n In computer terms, a proxy is a delegation object (or process)

n Used in remote procedure call (RPC) mechanisms:
- Client invokes on a (local) proxy object
- Proxy object sends request across the network to a server and waits for

a reply

n Some companies set up a HTTP proxy server:
- Firewall prevents outgoing connections to port 80
- So web browsers cannot connect to remote web sites directly
- Web browsers are configured to connect via the company’s proxy

server
- Proxy server can be configured to disallow access to eBay, Amazon, …

Chapter 2: Dynamic Proxies

Dynamic Proxies 4

Dynamic proxies in Java
n Java 1.3 introduced dynamic proxies

- The API is defined in the java.lang.reflect package

class Proxy {
public static Object newProxyInstance(

ClassLoader loader,
Class[] interfaces,
InvocationHandler h) throws ...

...
}
interface InvocationHandler {

Object invoke(Object proxy,
Method m,
Object[] args) throws Throwable;

}

Chapter 2: Dynamic Proxies

Dynamic Proxies 5

Steps required to create a dynamic proxy
n Step 1:

- Write a class that implements InvocationHandler
- Your implementation of invoke() should:

- Use Method.invoke() to delegate to the target object
- Provide some “added value” logic

n Step 2:
- Call Proxy.newInstance(), with the following parameters:

- targetObj.getClass().getClassLoader()
- targetObj.getClass.getInterfaces()
- InvocationHandler object “wrapper” around the target object

n Step 3:
- Typecast the result of Proxy.newInstance() to an interface

implemented by the target object

Chapter 2: Dynamic Proxies

Dynamic Proxies 6

How does this work?
n The Proxy.newProxyInstance() method:

- Uses runtime code generation techniques
- Generates a “hidden” class with a name of the form $Proxy<int>

(Use of “$” prevents namespace pollution)
- Generated class:

- Implements the specified interfaces
- Each method puts parameters into Object[] and calls
InvocationHandler.invoke()

n Can use a dynamic proxy only if a class implements 1+
interfaces

- Use of interfaces is a good programming practice
- So this requirement is not a problem in practice

Chapter 2: Dynamic Proxies

Dynamic Proxies 7

Sample code
public class Handler implements InvocationHandler {

private Object target;
private Handler(Object target) {

this.target = target;
}
public Object invoke(Object proxy, Method m,

Object[] args) throws Throwable
{

Object result = null;
try {

... // added-value code
result = m.invoke(target, args);

} catch(InvocationTargetException ex) {
... // added-value code
throw ex.getCause();

}
return result;

}
... // continued on the next slide

The proxy parameter
is usually ignored

The proxy parameter
is usually ignored

Chapter 2: Dynamic Proxies

Dynamic Proxies 8

Sample code (cont’)
... // continued from the previous slide
public static Object createProxy(Object target)
{

return Proxy.newProxyInstance(
target.getClass().getClassLoader(),
target.getClass().getInterfaces(),
new Handler(target));

}
}

Chapter 2: Dynamic Proxies

Dynamic Proxies 9

Example uses for dynamic proxies
n Added-value code might:

- Enforce security checks
- Begin and commit or rollback a transaction
- Use reflection & recursion to print details of all parameters

(for debugging)

n In a testing system, a proxy might “pretend” to be target object
- Returns “test” values instead of delegating to a real object
- EasyMock (www.easymock.org) makes it easy to write tests in this way

Chapter 3: Example Uses of Java Reflection

1

Example Uses of Java Reflection

Java Reflection
Explained Simply

CiaranMcHale.com

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 2

License
Copyright © 2008 Ciaran McHale.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
training course and associated documentation files (the “Training Course"), to deal in
the Training Course without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Training
Course, and to permit persons to whom the Training Course is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Training Course.

THE TRAINING COURSE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE TRAINING COURSE
OR THE USE OR OTHER DEALINGS IN THE TRAINING COURSE.

Chapter 3: Example Uses of Java Reflection

3

1. Basic uses of Java reflection

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 4

Ant
n Ant reads build (compilation) instructions from an XML file

n Ant is hard-coded to know how to process top-level elements
- property, target, taskdef and so on

n Each Ant task (used inside target elements) is a plug-in
- See example Ant build file on the next slide for examples of tasks

n Many task plug-ins are bundled with the Ant distribution
(jar, javac, mkdir, …)

- A properties file provides a mapping for
task-name à class-that-implements-task

n Users can use taskdef to tell Ant about user-written tasks
- See example on the next slide

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 5

Example Ant build file
<?xml version=“1.0”?>
<project name=“example build file” ...>

<property name=“src.dir” value=“...”/>
<property name=“build.dir” value=“...”/>
<property name=“lib.dir” value=“...”/>
<target name=“do-everything”>

<mkdir dir=“...”/>
<mkdir dir=“...”/>
<javac srcdir=“...” destdir=“...” excludes=“...”/>
<jar jarfile=“...” basedir=“...” excludes=“...”/>
<foo .../>

</target>
<taskdef name=“foo” classname=“com.example.tools.Foo”/>

</project>

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 6

Auto-completion in a text editor
n Some Java editors and IDEs provide auto-completion

- Example: you type “someObj.” and a pop-up menu lists fields and
methods for the object’s type

n The pop-up menu is populated by using Java reflection

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 7

JUnit
n JUnit 3 uses reflection to find methods whose names start

with “test”

n The algorithm was changed in JUnit 4
- Test methods are identified by an annotation

(Annotations were introduced in Java 1.5)
- Reflection is used to find methods with the appropriate annotation

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 8

Spring
n Below is an extract from a Spring configuration file:

<?xml version=“1.0”?>
<beans ...>

<bean id=“employee1”
class=“com.example.xyz.Employee”>
<property name=“firstName” value=“John”/>
<property name=“lastName” value=“Smith”/>
<property name=“manager” ref=“manager”/>

</bean>
<bean id=“manager”

class=“com.example.xyz.Employee”>
<property name=“firstName” value=“John”/>
<property name=“lastName” value=“Smith”/>
<property name=“manager” ref=“manager”/>

</bean>
...

</beans>

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 9

Spring (cont’)
n Spring uses reflection to create an object for each bean

- The object’s type is specified by the class attribute

n By default, the object is created with its default constructor
- You can use constructor-arg elements (nested inside bean) to use

a non-default constructor

n After an object is constructed, each property is examined
- Spring uses reflection to invoke obj.setXxx(value)

- Where Xxx is the capitalized name of property xxx
- Spring uses reflection to determine the type of the parameter passed to
obj.setXxx()

- Spring can support primitive types and common Collection types
- The ref attribute refers to another bean identified by its id

Chapter 3: Example Uses of Java Reflection

10

2. Code generation and bytecode manipulation

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 11

Code generators
n Most compilers have the following architecture

n Java’s reflection metadata is conceptually similar to a parse
tree

n You can build a Java code generation tool as follows:
- Do not write a Java parser. Instead run the Java compiler
- Treat generated .class files as your parse tree
- Use reflection to navigate over this “parse tree”

Generated files

parse tree
Back-end

code
generator

parser

compiler

input
file

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 12

Code generators (cont’)
n Compile-time code generation in a project:

- Use technique described on previous slide to generate code
- Then run Java compiler to compile generated code
- Use Ant to automate the code generation and compilation

n Runtime code generation:
- Use techniques described on previous slide to generate code
- Then invoke a Java compiler from inside your application:

- Can use (non-standard) API to Sun Java compiler
- Provided in tools.jar, which is shipped with the Sun JDK

- Or can use Janino (an open-source, embeddable, Java compiler)
- Hosted at www.janino.net

- Finally, use Class.forName() to load the compiled code

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 13

Uses for runtime code generation
n Runtime code generation is used…

n By JSP (Java Server Pages)
- To generate servlets from .jsp files

n By IDEs and debuggers
- To evaluate Java expressions entered by user

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 14

Uses for Java bytecode manipulation
n Compilers:

- Write a compiler for a scripting language and generate Java bytecode
- Result: out-of-the-box integration between Java and the language

- Groovy (groovy.codehaus.org) uses this technique

n Optimization:
- Read a .class file, optimize bytecode and rewrite the .class file

n Code analysis:
- Read a .class file, analyze bytecode and generate a report

n Code obfuscation:
- Mangle names of methods and fields in .class files

n Aspect-oriented programming (AOP):
- Modify bytecode to insert “interception” code
- Generate proxies for classes or interfaces
- Spring uses this technique

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 15

Tools for bytecode manipulation
n Example open-source projects for bytecode manipulation:

- ASM (http://asm.objectweb.org/)
- BCEL (http://jakarta.apache.org/bcel/)
- SERP (serp.sourceforge.net)

n CGLIB (Code Generation LIBrary):
- Built on top of BCEL
- Provides a higher-level API for generating dynamic proxies
- Used by other tools, such as Spring and Hibernate

Chapter 3: Example Uses of Java Reflection

16

3. Summary

Chapter 3: Example Uses of Java Reflection

Example Uses of Java Reflection 17

Summary
n A lot of tools use Java reflection:

- Plugins to extend functionality of an application (Ant)
- Auto-completion in Java editors and IDEs
- Use naming conventions of methods to infer semantics (JUnit test

methods)
- Tie components together (Spring)
- Compile-time code generation
- Runtime code generation

- Generate proxies
- Generate servlets from a markup language (JSP)

- Evaluate Java expressions entered interactively by a user

