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What is reflection?
n When you look in a mirror:

- You can see your reflection
- You can act on what you see, for example, straighten your tie

n In computer programming:
- Reflection is infrastructure enabling a program can see and manipulate 

itself
- It consists of metadata plus operations to manipulate the metadata

n Meta means self-referential
- So metadata is data (information) about oneself
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Widespread ignorance of Java reflection
n Typical way a developer learns Java:

- Buys a large book on Java
- Starts reading it
- Stops reading about half-way through due to project deadlines
- Starts coding (to meet deadlines) with what he has learned so far
- Never finds the time to read the rest of the book

n Result is widespread ignorance of many “advanced” Java 
features:

- Many such features are not complex
- People just assume they are because they never read that part of the 

manual
- Reflection is one “advanced” issue that is not complex



Chapter 1: Introduction to Java Reflection

Introduction to Java Reflection 6

Is reflection difficult?
n When learning to program:

- First learn iterative programming with if-then-else, while-loop, …
- Later, learn recursive programming

n Most people find recursion difficult at first
- Because it is an unusual way of programming
- But it becomes much easier once you “get it”

n Likewise, many people find reflection difficult at first
- It is an unusual way of programming
- But it becomes much easier once you “get it”
- Reflection seems natural to people who have written compilers

(a parse tree is conceptually similar to metadata in reflection)

n A lot of reflection-based programming uses recursion
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2. Metadata
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Accessing metadata
n Java stores metadata in classes

- Metadata for a class: java.lang.Class
- Metadata for a constructor: java.lang.reflect.Constructor
- Metadata for a field: java.lang.reflect.Field
- Metadata for a method: java.lang.reflect.Method

n Two ways to access a Class object for a class:

Class c1 = Class.forName(“java.util.Properties”);
Object obj = ...;
Class c2 = obj.getClass();

n Reflection classes are inter-dependent
- Examples are shown on the next slide
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Examples of inter-relatedness of reflection classes
class Class {

Constructor[] getConstructors();
Field         getDeclaredField(String name);
Field[]       getDeclaredFields();
Method[]      getDeclaredMethods();
...

}

class Field {
Class getType();
...

}

class Method {
Class[] getParameterTypes();
Class   getReturnType();
...

}
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Metadata for primitive types and arrays
n Java associates a Class instance with each primitive type:

Class c1 = int.class;
Class c2 = boolean.class;
Class c3 = void.class;

n Use Class.forName() to access the Class object for an array
Class c4 = byte.class;           // byte
Class c5 = Class.forName(“[B”);  // byte[]
Class c6 = Class.forName(“[[B”); // byte[][] 
Class c7 = Class.forName(“[Ljava.util.Properties”);

n Encoding scheme used by Class.forName()
- B à byte; C à char; D à double; F à float; I à int; J à long;

Lclass-name à class-name[]; S à short; Z à boolean
- Use as many “[”s as there are dimensions in the array

Might be returned by 
Method.getReturnType()

Might be returned by 
Method.getReturnType()
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Miscellaneous Class methods 
n Here are some useful methods defined in Class

class Class {
public String getName(); // fully-qualified name
public boolean isArray();
public boolean isInterface();
public boolean isPrimitive();
public Class getComponentType(); // only for arrays
...

}
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3. Calling constructors
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Invoking a default constructor
n Use Class.newInstance() to call the default constructor

Example:

abstract class Foo {
public static Foo create() throws Exception {

String className = System.getProperty(
“foo.implementation.class”,
“com.example.myproject.FooImpl”);

Class c = Class.forName(className);
return (Foo)c.newInstance();

}
abstract void op1(...);
abstract void op2(...);

}
...
Foo obj = Foo.create();
obj.op1(...);

Default 
value

Default 
value

Name of 
property

Name of 
property
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Invoking a default constructor (cont’)
n This technique is used in CORBA:

- CORBA is an RPC (remote procedure call) standard
- There are many competing implementations of CORBA
- Factory operation is called ORB.init()
- A system property specifies which implementation of CORBA is used

n A CORBA application can be written in a portable way
- Specify the implementation you want to use via a system property

(pass –D<name>=<value> command-line option to the Java 
interpreter)

n Same technique is used for J2EE:
- J2EE is a collection of specifications
- There are many competing implementations
- Use a system property to specify which implementation you are using
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A plug-in architecture
n Use a properties file to store a mapping for

plugin name à class name 
- Many tools support plugins: Ant, Maven, Eclipse, …

abstract class Plugin {
abstract void op1(...);
abstract void op1(...);

}
abstract class PluginManager {

public static Plugin load(String name)
throws Exception {

String className = props.getProperty(name);
Class c = Class.forName(className);
return (Plugin)c.newInstance();

}
}
...
Plugin obj = PluginManager.load(“...”);
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Invoking a non-default constructor
n Slightly more complex than invoking the default constructor:

- Use Class.getConstructor(Class[] parameterTypes)
- Then call Constructor.newInstance(Object[] parameters)

abstract class PluginManager {
public static Plugin load(String name)

throws Exception {
String className = props.getProperty(name);
Class c = Class.forName(className);
Constructor cons = c.getConstructor(

new Class[]{String.class, String.class});
return (Plugin)cons.newInstance(

new Object[]{“x”, “y”});
}

}
...
Plugin obj = PluginManager.load(“...”);
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Passing primitive types as parameters
n If you want to pass a primitive type as a parameter:

- Wrap the primitive value in an object wrapper
- Then use the object wrapper as the parameter

n Object wrappers for primitive types:
- boolean à java.lang.Boolean 
- byte    à java.lang.Byte 
- char    à java.lang.Character 
- int     à java.lang.Integer 
- ... 
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4. Methods
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Invoking a method
n Broadly similar to invoking a non-default constructor:

- Use Class.getMethod(String name,
Class[]parameterTypes)

- Then call Method.invoke(Object target,
Object[] parameters)

Object obj = ...
Class c = obj.getClass();
Method m = c.getMethod(“doWork”,

new Class[]{String.class, String.class});
Object result= m.invoke(obj, new Object[]{“x”,“y”});
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Looking up methods
n The API for looking up methods is fragmented:

- You can lookup a public method in a class or its ancestor classes
- Or, lookup a public or non-public method declared in the specified class

class Class {
public Method getMethod(String name,

Class[] parameterTypes);
public Method[] getMethods();
public Method getDeclaredMethod(String name,

Class[] parameterTypes);
public Method[] getDeclaredMethods();
...

}

A better name
would have been 

getPublicMethod()

A better name
would have been 

getPublicMethod()
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Finding an inherited method
n This code searches up a class hierarchy for a method

- Works for both public and non-public methods

Method findMethod(Class cls, String methodName,
Class[] paramTypes)

{
Method method = null;
while (cls != null) {

try {
method = cls.getDeclaredMethod(methodName,

paramTypes);
break;

} catch (NoSuchMethodException ex) {
cls = cls.getSuperclass();

}
}
return method;

}
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5. Fields
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Accessing a field
n There are two ways to access a field:

- By invoking get- and set-style methods (if the class defines them)
- By using the code shown below

Object obj = ...
Class c = obj.getClass();
Field f = c.getField(“firstName”);
f.set(obj, “John”);
Object value = f.get(obj);
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Looking up fields
n The API for looking up fields is fragmented:

- You can lookup a public field in a class or its ancestor classes
- Or, lookup a public or non-public field declared in the specified class

class Class {
public Field   getField(String name);
public Field[] getFields();
public Field   getDeclaredField(String name);
public Field[] getDeclaredFields();
...

}

A better name
would have been 

getPublicField()

A better name
would have been 

getPublicField()
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Finding an inherited field
n This code searches up a class hierarchy for a field

- Works for both public and non-public fields

Field findField(Class cls, String fieldName)
{

Field field = null;
while (cls != null) {

try {
field = cls.getDeclaredField(fieldName);
break;

} catch (NoSuchFieldException ex) {
cls = cls.getSuperclass();

}
}
return field;

}
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6. Modifiers
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Java modifiers
n Java defines 11 modifiers:

- abstract, final, native, private, protected, public, static, 
strictfp, synchronized, transient and volatile

n Some of the modifiers can be applied to a class, method or 
field:

- Set of modifiers is represented as bit-fields in an integer
- Access set of modifiers by calling int getModifiers()

n Useful static methods on java.lang.reflect.Modifier:
static boolean isAbstract(int modifier);
static boolean isFinal(int modifier);
static boolean isNative(int modifier);
static boolean isPrivate(int modifier);
...
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Accessing non-public fields and methods
n Both Field and Method define the following methods

(inherited from java.lang.reflect.AccessibleObject):

boolean isAccessible();
void setAccessible(boolean flag);
static void setAccessible(AccessibleObject[] array,

boolean flag);

n Better terminology might have been 
“SuppressSecurityChecks” instead of “Accessible”

n Example of use:
if (!Modifier.isPublic(field.getModifiers()) {

field.setAccessible(true);
}
Object obj = field.get(obj); Hibernate uses this technique 

so it can serialize non-public 
fields of an object to a database

Hibernate uses this technique 
so it can serialize non-public 

fields of an object to a database
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7. Further reading and summary
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Further reading
n There are very few books that discuss Java reflection

- An excellent one is Java Reflection in Action 
by Ira R. Forman and Nate Forman

- It is concise and easy to understand

n Main other source of information is Javadoc documentation
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Summary
n This chapter has introduced the basics of Java reflection:

- Metadata provides information about a program
- Methods on the metadata enable a program to examine itself and take 

actions

n Reflection is an unusual way to program:
- Its “meta” nature can cause confusion at first
- It is simple to use once you know how

n The next chapter looks at a reflection feature called
dynamic proxies
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What is a proxy?
n Dictionary definition: “a person authorized to act for another”

- Example: if you ask a friend to vote on your behalf then you are
“voting by proxy”

n In computer terms, a proxy is a delegation object (or process)

n Used in remote procedure call (RPC) mechanisms:
- Client invokes on a (local) proxy object
- Proxy object sends request across the network to a server and waits for 

a reply

n Some companies set up a HTTP proxy server:
- Firewall prevents outgoing connections to port 80
- So web browsers cannot connect to remote web sites directly
- Web browsers are configured to connect via the company’s proxy 

server
- Proxy server can be configured to disallow access to eBay, Amazon, …
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Dynamic proxies in Java
n Java 1.3 introduced dynamic proxies

- The API is defined in the java.lang.reflect package

class Proxy {
public static Object newProxyInstance(

ClassLoader loader,
Class[] interfaces,
InvocationHandler h) throws ...

...
}
interface InvocationHandler {

Object invoke(Object proxy,
Method m,
Object[] args) throws Throwable;

}
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Steps required to create a dynamic proxy
n Step 1:

- Write a class that implements InvocationHandler
- Your implementation of invoke() should:

- Use Method.invoke() to delegate to the target object
- Provide some “added value” logic

n Step 2:
- Call Proxy.newInstance(), with the following parameters:

- targetObj.getClass().getClassLoader()
- targetObj.getClass.getInterfaces()
- InvocationHandler object “wrapper” around the target object

n Step 3:
- Typecast the result of Proxy.newInstance() to an interface 

implemented by the target object



Chapter 2: Dynamic Proxies

Dynamic Proxies 6

How does this work?
n The Proxy.newProxyInstance() method:

- Uses runtime code generation techniques
- Generates a “hidden” class with a name of the form $Proxy<int>

(Use of “$” prevents namespace pollution)
- Generated class:

- Implements the specified interfaces
- Each method puts parameters into Object[] and calls 
InvocationHandler.invoke()

n Can use a dynamic proxy only if a class implements 1+ 
interfaces

- Use of interfaces is a good programming practice
- So this requirement is not a problem in practice
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Sample code
public class Handler implements InvocationHandler {

private Object target;
private Handler(Object target) {

this.target = target;
}
public Object invoke(Object proxy, Method m,

Object[] args) throws Throwable
{

Object result = null;
try {

... // added-value code
result = m.invoke(target, args);

} catch(InvocationTargetException ex) {
... // added-value code
throw ex.getCause();

}
return result;

}
... // continued on the next slide

The proxy parameter 
is usually ignored

The proxy parameter 
is usually ignored
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Sample code (cont’)
... // continued from the previous slide
public static Object createProxy(Object target)
{

return Proxy.newProxyInstance(
target.getClass().getClassLoader(),
target.getClass().getInterfaces(),
new Handler(target));

}
}
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Example uses for dynamic proxies
n Added-value code might:

- Enforce security checks
- Begin and commit or rollback a transaction
- Use reflection & recursion to print details of all parameters

(for debugging)

n In a testing system, a proxy might “pretend” to be target object
- Returns “test” values instead of delegating to a real object
- EasyMock (www.easymock.org) makes it easy to write tests in this way
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Ant
n Ant reads build (compilation) instructions from an XML file

n Ant is hard-coded to know how to process top-level elements
- property, target, taskdef and so on

n Each Ant task (used inside target elements) is a plug-in
- See example Ant build file on the next slide for examples of tasks

n Many task plug-ins are bundled with the Ant distribution
(jar, javac, mkdir, …)

- A properties file provides a mapping for
task-name à class-that-implements-task 

n Users can use taskdef to tell Ant about user-written tasks
- See example on the next slide
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Example Ant build file
<?xml version=“1.0”?>
<project name=“example build file” ...>

<property name=“src.dir” value=“...”/>
<property name=“build.dir” value=“...”/>
<property name=“lib.dir” value=“...”/>
<target name=“do-everything”>

<mkdir dir=“...”/>
<mkdir dir=“...”/>
<javac srcdir=“...” destdir=“...” excludes=“...”/>
<jar jarfile=“...” basedir=“...” excludes=“...”/>
<foo .../>

</target>
<taskdef name=“foo” classname=“com.example.tools.Foo”/>

</project>
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Auto-completion in a text editor
n Some Java editors and IDEs provide auto-completion

- Example: you type “someObj.” and a pop-up menu lists fields and 
methods for the object’s type

n The pop-up menu is populated by using Java reflection
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JUnit
n JUnit 3 uses reflection to find methods whose names start 

with “test” 

n The algorithm was changed in JUnit 4
- Test methods are identified by an annotation

(Annotations were introduced in Java 1.5)
- Reflection is used to find methods with the appropriate annotation
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Spring
n Below is an extract from a Spring configuration file:

<?xml version=“1.0”?>
<beans ...>

<bean id=“employee1”
class=“com.example.xyz.Employee”>
<property name=“firstName” value=“John”/>
<property name=“lastName” value=“Smith”/>
<property name=“manager” ref=“manager”/>

</bean>
<bean id=“manager”

class=“com.example.xyz.Employee”>
<property name=“firstName” value=“John”/>
<property name=“lastName” value=“Smith”/>
<property name=“manager” ref=“manager”/>

</bean>
...

</beans>
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Spring (cont’)
n Spring uses reflection to create an object for each bean

- The object’s type is specified by the class attribute

n By default, the object is created with its default constructor
- You can use constructor-arg elements (nested inside bean) to use 

a non-default constructor

n After an object is constructed, each property is examined
- Spring uses reflection to invoke obj.setXxx(value)

- Where Xxx is the capitalized name of property xxx
- Spring uses reflection to determine the type of the parameter passed to 
obj.setXxx()

- Spring can support primitive types and common Collection types
- The ref attribute refers to another bean identified by its id
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2. Code generation and bytecode manipulation
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Code generators
n Most compilers have the following architecture

n Java’s reflection metadata is conceptually similar to a parse 
tree

n You can build a Java code generation tool as follows:
- Do not write a Java parser. Instead run the Java compiler
- Treat generated .class files as your parse tree
- Use reflection to navigate over this “parse tree”

Generated files

parse tree
Back-end

code
generator

parser

compiler

input 
file
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Code generators (cont’)
n Compile-time code generation in a project:

- Use technique described on previous slide to generate code
- Then run Java compiler to compile generated code
- Use Ant to automate the code generation and compilation

n Runtime code generation:
- Use techniques described on previous slide to generate code
- Then invoke a Java compiler from inside your application:

- Can use (non-standard) API to Sun Java compiler
- Provided in tools.jar, which is shipped with the Sun JDK

- Or can use Janino (an open-source, embeddable, Java compiler)
- Hosted at www.janino.net 

- Finally, use Class.forName() to load the compiled code
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Uses for runtime code generation
n Runtime code generation is used…

n By JSP (Java Server Pages)
- To generate servlets from .jsp files

n By IDEs and debuggers
- To evaluate Java expressions entered by user
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Uses for Java bytecode manipulation
n Compilers:

- Write a compiler for a scripting language and generate Java bytecode
- Result: out-of-the-box integration between Java and the language

- Groovy (groovy.codehaus.org) uses this technique

n Optimization:
- Read a .class file, optimize bytecode and rewrite the .class file

n Code analysis:
- Read a .class file, analyze bytecode and generate a report

n Code obfuscation:
- Mangle names of methods and fields in .class files

n Aspect-oriented programming (AOP):
- Modify bytecode to insert “interception” code
- Generate proxies for classes or interfaces
- Spring uses this technique
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Tools for bytecode manipulation
n Example open-source projects for bytecode manipulation:

- ASM (http://asm.objectweb.org/)
- BCEL (http://jakarta.apache.org/bcel/)
- SERP (serp.sourceforge.net)

n CGLIB (Code Generation LIBrary):
- Built on top of BCEL
- Provides a higher-level API for generating dynamic proxies
- Used by other tools, such as Spring and Hibernate
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3. Summary
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Summary
n A lot of tools use Java reflection:

- Plugins to extend functionality of an application (Ant)
- Auto-completion in Java editors and IDEs
- Use naming conventions of methods to infer semantics (JUnit test

methods)
- Tie components together (Spring)
- Compile-time code generation
- Runtime code generation

- Generate proxies
- Generate servlets from a markup language (JSP)

- Evaluate Java expressions entered interactively by a user


